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Abstract
We have experimentally demonstrated the interferometric complementarity,
which relates the distinguishability D quantifying the amount of which-way
(WW) information to the fringe visibility V characterizing the wave feature of
a quantum entity, in a bulk ensemble by nuclear magnetic resonance (NMR)
techniques. We are primarily concerned about the intermediate cases: partial
fringe visibility and incomplete WW information. We propose a quantitative
measure of D by an alternative geometric strategy and investigate the relation
between D and entanglement. By measuring D and V independently, it turns
out that the duality relation D2 + V 2 = 1 holds for pure quantum states of the
markers.

PACS numbers: 03.65.Ud, 03.67.−a

1. Introduction

Bohr complementarity [1] expresses the fact that quantum systems possess properties that are
equally real but mutually exclusive. This is often illustrated by means of Young’s two-slit
interference experiment, where ‘the observation of an interference pattern and the acquisition
of which-way (WW) information are mutually exclusive’ [2]. As stated by Feynman, the
two-slit experiment ‘has in it the heart of quantum mechanics. In reality, it contains the
only mystery’ [3]. The complementarity is often superficially identified with the ‘wave–
particle duality of matter’. Because of its tight association with the interference experiment,
the terms ‘interferometric duality’ or ‘interferometric complementarity’ are more preferable.
Two extreme cases, ‘full WW information and no fringes when measuring the population of
quantum states’ and ‘perfect fringe visibility and no WW information’ have been clarified
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in textbooks and demonstrated with many different kinds of quantum objects including
photons [4], electrons [5], neutrons [6], atoms [7] and nuclear spins in a bulk ensemble with
nuclear magnetic resonance (NMR) techniques [8]. In [8], we further proved theoretically and
experimentally that full WW information is exclusive with population fringes but compatible
with coherence patterns.

In order to describe the duality in the intermediate regime ‘partial fringe visibility and
partial WW information’, quantitative measures for both the fringe visibility V and WW
information are required. The definition of the former is the usual one. In variants of two-slit
experiments, different WW detectors or markers, such as microscopic slit and micromaser,
are used to label the way in which the quantum entity evolves. A quantitative approach to
WW knowledge was first given by Wootters and Zurek [11], and then by Bartell [12]. Some
relevant inequalities to quantify the interferometric duality can be found in a number of other
publications [2, 13–16]. Among them, Englert [2] presented definitions of the predictability
P and the distinguishability D to quantify how much WW information is stored in the marker,
and derived an inequality D2 +V 2 � 1 at the intermediate stage which puts a bound on D when
given a certain fringe visibility V . Although the quantitative aspects of the interferometric
complementarity have been discussed in a number of theoretical papers, there are just a
few experimental studies, i.e., the neutron experiments [17, 18], the photon experiments
[19, 20] and the atom interferometer [21]. Recently, a complementarity experiment with an
interferometer at the quantum–classical boundary [22] was also described.

In this paper, we experimentally investigate the interferometric complementarity of the
ensemble-averaged spin states of one of two kinds of nuclei in NMR sample molecules
for the intermediate situations. We follow our approach detailed in [8], but use two non-
orthogonal spin states of another nuclei in the sample molecules as the path markers. By
entangling the observed spin with the marker one, the interference is destroyed because it is in
principle possible to determine the states the observed spin possesses by performing a suitable
measurement of the marker one [2]. However, in this paper, an alternative geometric strategy
of measuring D is given and the relationship between D and the entanglement of the spin states
is clarified. And finally the duality relation D2 + V 2 = 1 for various values of D and V is
demonstrated.

2. Scheme and definition

Our experimental scheme can be illustrated by a Mach–Zehnder interferometer (shown in
figure 1), a modified version of the two-slit experiment. The observed and marker quantum
objects, represented by B and A, respectively, compose a bipartite quantum system BA.
Suppose the input state of BA to be |ψ0〉 = |0〉B |0〉A ≡ |00〉, with |0〉 being one of two
orthonormal bases |0〉 and |1〉 of B and A. Firstly, a beam splitter (BS) splits |0〉B into

1√
2
(|0〉B + |1〉B), meaning that the observed system B evolves along the two paths |0〉B and

|1〉B simultaneously with equal probabilities. In the meantime, path markers (PM) label the
different paths |0〉B and |1〉B with the marker states |m+〉A and |m−〉A respectively. The joint
action of the BS and PM denoted by operation U1, thus transforms |ψ0〉 into

|ψ1〉 = 1√
2
(|0〉B |m+〉A + |1〉B |m−〉A). (1)

Secondly, phase shifters (PS) add a relative phase difference between the two paths, which are
then combined into the output state |ψ2〉 by a beam merge (BM). The joint action of the PS
and BM, which is applied solely on B is accomplished by a unitary operation

U2 = 1√
2

(
1 eiφ

−e−iφ 1

)
. (2)
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Figure 1. Schematic diagram of a two-way interferometer. The input, say |0〉B |0〉A, is split two
ways by the beam splitter (BS), then labelled by the path markers (PM), phase shifted by the phase
shifters (PS) and finally recombined into the output by the beam merger (BM).

And the output state |ψ2〉 = U2|ψ1〉 could be read as

|ψ2〉 = 1
2 [|0〉B(|m+〉A + eiφ|m−〉A) + |1〉B(|m−〉A − e−iφ |m+〉A)]. (3)

Finally, measuring the population, I, of B in the states |0〉B and |1〉B gives

I (φ) = 1
2 (1 ± Re(A〈m+|m−〉A) eiφ) (4)

where ‘±’ correspond to the populations in |0〉B and |1〉B, respectively. Repeating the
measurements at different φ might produce population fringes. Suppose the marker states
|m±〉A = cos ϕ±|0〉A + sin ϕ±|1〉A, and from the usual definition of the fringe visibility
V = (Imax − Imin)/(Imax + Imin) and equation (4), one gets

V = |A〈m+|m−〉A| = |cos ϕ| (5)

where ϕ = ϕ− − ϕ+.

Englert [2] proposed a quantitative measure for D by introducing a physical quantity LW —
the ‘likelihood for guessing the right way’, which depends on the choice of an observable W,

LW =
∑

i

max{p(Wi, |0〉B), p(Wi, |1〉B)} (6)

where p (Wi, |0〉B) and p (Wi, |1〉B) denote the joint probabilities that the eigenvalue Wi of
W is found and the observed object takes path |0〉B or |1〉B . For example, for the state of
equation (1), an optimal observable Wopt can be found to maximize LW = (1 + |sin ϕ|)/2
in the experiments [21] and by the definition of the distinguishability D of paths D =
−1 + 2 maxW {LW } [2], one gets

D(ϕ) = |sin ϕ|. (7)

Here, we present an expression for D in an intuitively geometric way. To this end, one projects
the marker states |m±〉A into an appropriate orthonormal basis {|β+〉A, |β−〉A},

|m+〉A = γ+|β+〉A + γ−|β−〉A |m−〉A = δ+|β+〉A + δ−|β−〉A (8)

where |γ+|2 + |γ−|2 = |δ+|2 + |δ−|2 = 1. In the two-path case, the criterion of choosing
{|β+〉A, |β−〉A} is to make the difference of probabilities of measuring the two states |m+〉A and
|m−〉A on the basis |β+〉A equal to that when measuring |m+〉A and |m−〉A on |β−〉A. These
probability differences are then defined as the distinguishability

D = ||γ+|2 − |δ+|2| = ||δ−|2 − |γ−|2|. (9)

The basis {|β+〉A, |β−〉A} can be rewritten into the computational basis,

|β+〉A = cos θ |0〉A + sin θ |1〉A |β−〉A = sin θ |0〉A − cos θ |1〉A (10)
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Figure 2. The state vectors in Hilbert space for defining D. {|0〉, |1〉} represents the standard
orthonormal basis. Two marker states {|m±〉} and another orthonormal basis {|β±〉} are determined
by the angles ϕ+, ϕ− and θ, π

2 +θ, respectively. The dashed line denotes the angle bisector between
the two states {|m±〉}. From the map, one can get the relation θ = ϕ++ϕ−

2 − π
4 .

where θ is the angle of the state vector |β+〉A with respect to the basis |0〉A. In order to satisfy
equation (9), from figure 2 and by geometric knowledge θ = ϕ++ϕ−

2 − π
4 must hold, which

yields

γ+ = δ− = cos
(π

4
− ϕ

2

)
γ− = δ+ = sin

(π

4
− ϕ

2

)
. (11)

Here, ϕ = ϕ− − ϕ+ is the angle between the two-marker-state vectors in Hilbert space. So
from equations (9) and (11), the distinguishability is equally given by equation (7). It can
also be seen that the desired basis {|β+〉A, |β−〉A} deduced by our geometric strategy is just the
eigenvectors of the optimal observable Wopt [21].

These expressions for V and D are consistent with those in [21] and lead to the duality
relation

D2(ϕ) + V 2(ϕ) = 1. (12)

Equations (5) and (7) reveal the sinusoidal and cosinusoidal behaviours of D and V ,
respectively, on the angle ϕ between |m+〉A and |m−〉A in the Hilbert space HA. D and V ,
therefore, are determined by the feature of |m+〉A and |m−〉A, especially by the value of ϕ.
However, for any value of ϕ the duality relation (13) holds when two evolution paths, |0〉B and
|1〉B, are labelled by quantum pure states |m+〉A and |m−〉A. Generally equation (12) should
be replaced by D2 + V 2 � 1 [2, 15, 16].

As WW information of the observed system B is stored in the states of the marker
system A through the interaction and correlation of A and B, the distinguishability of B’s
paths depends on the feature of the marker states, or more exactly, the correlation property
of the combined system AB. It would be natural to examine the relationship between the
entanglement of the system AB and the distinguishability. For a bipartite pure state, the
entanglement E can be denoted by the von Neumann entropy S [24], S = S(ρ(A)) = S(ρ(B)),

with S(ρA(B)) = − Tr(ρA(B) log2 ρA(B)) and ρA(B) = TrA(B)(ρAB) for each subsystem. The
entanglement E for the pure state |ψ1〉 shown in equation (1) is then derived as

E(ϕ) = −1 − cos ϕ

2
log2

(
1 − cos ϕ

2

)
− 1 + cos ϕ

2
log2

(
1 + cos ϕ

2

)
. (13)

It can be obtained from equation (13) that E = 0 for ϕ = kπ and E = 1 for ϕ = (2k + 1)π/2
with k = 0, 1, 2, . . . , which correspond to D = 0 and 1, respectively. A detailed quantitative
analysis of E will be given later (see figure 4).
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Figure 3. Normalized populations versus the angle ϕ, between two marker states in the
experiments to measure D. Data points +, ©, ∗ and �denote the joint probabilities p(|β+〉A, |0〉B),

p(|β−〉A, |0〉B), p(|β+〉A, |1〉B) and p(|β−〉A, |1〉B), respectively. Theoretical curves expressed by
p(|β+〉A, |0〉B) = p(|β−〉A, |1〉B) = |cos( π

4 − ϕ
2 )|2/2 and p(|β−〉A, |0〉B) = p(|β+〉A, |1〉B) =

|sin( π
4 − ϕ

2 )|2/2 are depicted with the solid line and the dash-dotted line, respectively.

3. Experimental procedure and results

The scheme stated above was implemented by liquid-state NMR spectroscopy with a two-spin
sample of carbon-13 labelled chloroform 13CHCl3 (Cambridge Isotope Laboratories, Inc.).
We made use of the hydrogen nucleus (1H) as the marker spin A and the carbon nuclei
(13C) as the observed spin B in the experiments. Spectra were recorded on a BrukerARX500
spectrometer with a probe tuned at 125.77 MHz for 13C and at 500.13 MHz for 1H. The
spin–spin coupling constant J between 13C and 1H is 214.95 Hz. The relaxation times were
measured to be T1 = 4.8 s and T2 = 3.3 s for the proton, and T1 = 17.2 s and T2 = 0.35 s for
carbon nuclei.

First, we prepared the quantum ensemble in an effective pure state ρ0 from the thermal
equilibrium by line-selective pulses with appropriate frequencies and rotation angles and a
magnetic gradient pulse [25]. The state ρ0 has the same properties and NMR experimental
results as the pure state |ψ0〉 = |00〉. Then we transferred ρ0 to another state ρ1 equivalent to
the state |ψ1〉 shown in equation (1) for accomplishing the BS and PM actions by applying a

Hadamard transformation HB = 1√
2

(1 1
1 −1

)
on spin B and two unitary transformations

P1 = exp
(−iEA

+ σB
y ϕ+

)
P2 = exp

(−iEA
−σB

y ϕ−
)

(14)

where σ i
η(η = x, y, z) are Pauli matrices of the spin i, Ei

± = 1
2

(
12 ± σ i

z

)
and 12 is

the 2 × 2 unit matrix. These operations were implemented by the NMR pulse sequence
YA(ϕ+ + ϕ−)XA

(
π
2

)
JAB(ϕ− − ϕ+)XA

(−π
2

)
XB(π)YB

(
π
2

)
to be read from left to right, where

YA(ϕ+ +ϕ−) denotes an ϕ+ +ϕ− rotation about ŷ-axis on spin A and so forth, and JAB(ϕ− −ϕ+)

represents a time evolution of (ϕ− − ϕ+)/πJAB under the scalar coupling between spins
A and B. Finally, the PS and BM operations were achieved by the transformation U2,
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Figure 4. Visibility V (denoted by ©) and distinguishability D (denoted by ∗) as a function of ϕ.
The solid lines are the theoretical expectations of V and D and the dashed line denotes E expressed
by equation (11).

which was realized by the NMR pulse sequence XB(−θ1)YB(θ2)XB(−θ1) with θ1 =
tan−1(−sin φ), and θ2 = 2 sin−1(−cos φ/

√
2).

In our experiments, two sets of experiments for a given value of ϕ = ϕ− − ϕ+

were performed to measure the fringe visibility V and the distinguishability D. In the
experiment of a quantitative measure for D, whether it is defined by the geometric
way or the maximum likelihood estimation, the joint probabilities p(|β±〉A, |0〉B) and
p(|β±〉A, |1〉B) must be measured first. We performed the joint measurements by a two-
part procedure inspired by Brassard et al [26]. Part one of the procedure is to rotate
from the basis {|0〉B |β+〉A, |0〉B |β−〉A, |1〉B |β+〉A, |1〉B |β−〉A} into the computational basis
{|00〉, |01〉, |10〉, |11〉} (omitting the subscripts A and B), which was realized by the unitary
operation

RB =
(

cos α −sin α

sin α cos α

)
(15)

where α = π
4 − ϕ++ϕ−

2 , corresponding to the NMR pulse YB(2α). Part two of the procedure is
to perform a projective measurement in the computational basis which could be simulated by
a magnetic gradient pulse along the z-axis [27]. Accordingly, the joint probabilities p(|β±〉A,

|0〉B) and p(|β±〉A, |1〉B) were obtained by reconstructing the diagonal elements of the
deviation density matrix by quantum state tomography [28]. The results are shown in figure 3.
In our geometric strategy, from equations (1) and (8) the information γ+, γ− or δ+, δ− can
be obtained, determined by the population probabilities, i.e., |γ+|2 = 2p(|0〉B |β+〉A), |γ−|2 =
2p(|0〉B |β−〉A) and |δ+|2 = 2p(|1〉B |β+〉A), |δ−|2 = 2p(|1〉B |β−〉A). Finally, we used equation
(9) and took the average value of (||γ+|2 − |δ+|2| + ||δ−|2 − |γ−|2|)/2 to give data points of
D which are shown in figure 4. On the other hand, utilizing the data points of figure 3, we
achieved the experimental values of the likelihood LW from equation (6) and obtained the D
measure with the maximum likelihood estimation strategy, which are the same outcomes as in
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Figure 5. Experimental test of the duality relation based on the data from figure 3. D2 + V 2 is
plotted as a function of ϕ. The solid line represents the theoretical expectation.

our geometric strategy. Therefore, the intuitively geometric strategy gives an equally effective
measure of the distinguishability D.

For measuring V , we repeatedly applied the NMR pulse sequence
XB(−θ1) YB(θ2) XB(−θ1) that represents the U2(φ) operation for various values of φ

and detected the population of B in the state ρ2 equivalent to the output state |ψ2〉. A set
of appropriate values θ1 and θ2 were chosen to vary the values for φ from 0 to 2π . Using
the same read-out pulses and tomography method as that in the measurement of D, we
reconstructed the populations of B for various values of φ . The variation of the normalized
populations versus φ showed a desirable interference fringe, from which the value of V

was extracted. Care should be exercised in processing the spectra data of the different
experimental runs in order to get the normalized populations of the deviation density
matrix.

The objective of the present paper is to study the interferometric complementarity in the
intermediate regime with two non-orthogonal marker states, so the experimental procedure
mentioned above was repeated for different ϕ. Without loss of generality, we assumed ϕ+ = π

2
and changed the ϕ values from 0 to 5π/4 by varying the ϕ− value with increments of π/16.
The measured values of V (ϕ) and D(ϕ) in two sets of independent experiments were plotted
in figure 4, along with the theoretical curves of V (ϕ),D(ϕ) and E(ϕ). The experimental data
and theoretical curve for D2(ϕ) + V 2(ϕ) are depicted in figure 5 (see figure 5).

From figures 4 and 5, some remarks can be made as follows.

(1) For ϕ = kπ (k = 0, 1, 2, . . .), which means |A〈m+|m−〉A| = 1, two marker states are
identical (differing with an irrelevant phase factor possible), and the state of the system
AB is completely unentangled (E = 0). In this case, no WW information of system B
is stored in system A so that two evolution paths of B are indistinguishable (D = 0) and
perfect fringe visibility is observed (V = 1). For ϕ = (2k+1)π/2, i.e., |A〈m+|m−〉A| = 0,

the marker states are orthogonal, and the state of the system AB is completely entangled
(E = 1). This leads to full WW information (D = 1) and no interference fringes
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(V = 0). These two extremes are exactly the same examples that we have studied in [8]
with an NMR bulk ensemble by population measurements.

(2) When ϕ equals other values than kπ and (2k + 1)π/2, which corresponds to 0 <

|A〈m+|m−〉A| < 1, the marker states are partially orthogonal, and the state of the AB
system is partially entangled (0 < E < 1). In these intermediate situations, partial fringe
visibility (0 < V < 1) and partial WW information (0 < D < 1) result. Nevertheless,
the interferometric duality still holds as in the extreme cases.

(3) In the whole range of ϕ, E varies synchronously with D. The reason is that the increase
of E means more correlation between systems B and A and more WW information of B
stored in A, so D rises, and vice versa. In contrast, the variation trend of E versus ϕ is
opposite to that of V versus ϕ. As the function of E versus ϕ has a complicated form,
there is no similar relation between E and V to the duality of D2 + V 2 = 1.

(4) The measured values of V,D and thus the derived values of D2+V 2 are fairly in agreement
with theoretical expectation. The discrepancies between the experimental and theoretical
values of V,D and D2 + V 2 at some data points, estimated to be less than ±10%, are due
to the inhomogeneity of the RF field and static magnetic field, imperfect calibration of
RF pulses, and signal decay during the experiments.

4. Conclusion

In conclusion, we have experimentally tested the interferometric complementarity in a spin
ensemble with NMR techniques. In addition to two extremes, the intermediate cases that the
fringe visibility V reduces due to increase in the storage of WW information are emphasized.
The measured data of D and V in our NMR experiments are consistent with the duality relation.
In particular, the close link among D,V and the entanglement of the composite system
consisting of the observed and marker states is explicitly revealed and explained. Though the
experiment was not strictly limited in the one-photon-at-a-time fact, it was performed on a
quantum ensemble whose dynamical evolution is still quantum-mechanical. Therefore, our
experiment provides a test of the duality relation in the intermediate situations.
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